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Abstract

This work considers the discontinuous Galerkin (DG) finite element discretization of
first-order systems of conservation laws derivable as moments of the kinetic Boltz-
mann equation with Levermore (1996) closure. Using standard energy analysis tech-
niques, a new class of energy stable numerical flux functions are devised for the DG
discretization of Boltzmann moment systems. Simplified energy stable numerical
fluxes are then constructed which replace exact state space integration in the nu-
merical flux with Gauss-Lobatto quadrature. Numerical results for supersonic flow
over a cylinder geometry in the continuum and transistional regimes using 5 and 10
moment approximations are presented using the newly devised DG discretizations.
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1 Introduction

Gases are frequently modeled as either a collection of particles described in
terms of position and velocity or as a continuum media modeled in terms
macroscopic quanties such as density, temperature, and velocity. The Boltz-
mann equation describes the evolution of particle distributions. This equation
is efficiently solved using direct simulation Monte Carlo (DSMC) methods
when particles in the gas have a mean free path that is large relative to some
characteristic macroscopic length scale, see Bird (1994). Dense gases with short
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mean free path are well described and efficiently solved using macroscopic con-
tinuum descriptions such as the Navier-Stokes equations. An important pa-
rameter in characterizing the applicability and efficiency of each model is the
Knudsen number defined as the ratio of the particle mean free path distance to
the characteristic macroscopic length scale. As the Knudsen number increases
the validity of continuum models such as the Navier-Stokes equations deteri-
orates. As the Knudsen number decreases, the arithmetic complexity of the
DSMC method increases rapidly. Difficulties arise in the “transitional” regime
when the Knudsen number is of the order 10−3 to 10−1. In this regime, DSMC
methods are too expensive and the Navier-Stokes equations too inaccurate. To
overcome this computational difficulty, various extended macroscopic models
have been proposed that are constructed by taking a finite sequence of mo-
ments of the Boltzmann equation together with a closure assumption. This
extends the range of applicability of continuum approximations into the tran-
sitional regime. An early example of such a closed system is the 13 moment
model due to Grad (1949). Unfortunately, this model exhibits a loss of hyper-
bolicity in certain flow regimes and is generally not used in numerical simu-
lations. More recently, Levermore (1996) has suggested a closure assumption
based on a minimum entropy principle. An important property of Boltzmann
moment systems with Levermore closure is the guarantee of hyperbolicity
using a canonical exponential conjugate entropy. This structure is exploited
in the remainder of this paper in both the analysis and the construction of
energy stable DG discretizations for Boltzmann moment systems. Although
special consideration is given here to moment systems that are extensions of
the Euler and Navier-Stokes equations, the Levermore closure technique has
been applied to a wide variety of particle-continuum problems ranging from
relativistic gas dynamics with gravitation as discussed in Banach (2003) to
semiconductor device simulation, see Anile and Hern (2002).

Discretization techniques for Boltzmann moment systems have been devel-
oped previously in LeTallec and Perlat (1997); Junk (1997); Struchtrup (2000).
Stable discretizations have been constructed using “half fluxes” obtained by
splitting the Boltzmann equation and then taking moments. If exact inte-
gration is used for particle phase space integrations, the half fluxes used in
these methods then reduce to the kinetic flux vectors previously developed by
Deshpande (1986b) in the special case of polytropic gases. Using half fluxes
together with first order upwind differencing, LeTallec and Perlat prove that
numerical solutions satisfy a discrete entropy inequality and are guaranteed
to have positive fluid density. This paper considers numerical discretization of
Boltzmann moment systems using the discontinuous Galerkin finite method.
As will be shown, the DG formulation permits discretization on arbitrary
unstructured meshes using arbitrary order polynomial approximation while
retaining a discrete entropy inequality property. The present work differs sig-
nificantly from the previous work in several respects. Unlike the previous
methods, symmetrization variables are used as the basic unknowns. These

2

NAS Technical Report
NAS-06-006

July 2006



variables play a central role in the Levermore closure theory. For the steady-
state calculations shown later, the entire discontinuous Galerkin method has
been implemented in these symmetric variables so that the transformation to
and from the macroscopic conservation variables in never needed except for
the specification of initial data and in some instances specification of bound-
ary data. This is a major practical consideration since the calculation of the
conservation variables from the symmetrization variables can be problematic
as well as expensive. Although the computation of conservation law variables
from symmetrization variables is a direct integration in particle phase space,
the transformation from conserved variables to symmetrization variables is
not. LeTallec and Perlat suggest a numerical minimization procedure for this
purpose. Unfortunately, even though the function to be minimized in this pro-
cedure is convex, Junk (1998) shows that this minimization can fail because the
domain of definition in the minimization is not convex. Using generalizations
of Maxwellian and Gaussian distributions, this realizability problem becomes
most important when moments involving polynomials of degree greater than
two are used. The present work also develops an alternative to the half fluxes
described above. The new flux formula utilizes mean value linearization via
path integation in state space and flux difference splitting. Using this nu-
merical flux, we prove a rigorous discrete entropy inequality and prove that
the path integration can be replaced by Gauss-Lobatto quadrature without
sacrificing the discrete entropy inequality property.

2 Background

Consider the Cauchy initial value problem for a system of m coupled first-
order differential equations in d space coordinates and time which represents
a conservation law process. Let u(x, t) : Rd×R+ 7→ Rm denote the dependent
solution variables and f(u) : Rm 7→ Rm×d the flux vector. The model Cauchy
problem is then given by











u,t + fi,xi = 0

u(x, 0) = u0(x)
(1)

with implied summation on the index i = 1, . . . , d. Additionally, the system
is assumed to possess a convex scalar entropy extension. Let U(u) : Rm 7→ R
and F (u) : Rm 7→ Rd denote an entropy-entropy flux pair for the system such
that in addition to (1) the following inequality holds

U,t + Fi,xi ≤ 0 (2)
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with equality for classical (smooth) solutions. In the symmetrization theory
for first-order conservation laws Godunov (1961); Mock (1980); Harten (1983),
one seeks a mapping u(v) : Rm 7→ Rm applied to (1) so that when transformed

u,vv,t + fi,v v,xi = 0 (3)

the matrix u,v is symmetric positive definite (SPD) and the matrices fi,v
are symmetric. Clearly, if twice differentiable functions U(v) : Rm 7→ R and
Fi(v) : Rm 7→ R can be found so that

u = UT,v, fi = FTi,v (4)

then the matrices

u,v = U,vv, fi,v = Fi,vv

are symmetric. Further, we shall require that U(v) be a convex function such
that

lim
v→∞

U(v)

|v|
= +∞ (5)

so that U(u) can be interpreted as a Legendre transform of U(v)

U(u) = sup
v
{v · u− U(v)} .

From (5), it follows that ∃ v∗ ∈ Rm such that v ·u−U(v) achieves a maximum
at v∗

U(u) = v∗ · u− U(v∗) . (6)

At this maximum u = U,v(v∗) which can be locally inverted to the form
v∗ = v(u). Elimination of v∗ in (6) yields the simplified duality relationship

U(u) = v(u) · u− U(v(u)) .

Differentiation of this expression

UT
,u = v + v,uu− v,u UT,v = v (7)

4



gives an explicit formula for the entropy variables v in terms of derivatives of
the entropy function U(u). Using the mapping relation v(u), a duality pairing
for entropy flux components is defined

Fi(u) = v(u) · fi(u)−Fi(v(u)) .

Differentiation then yields the flux relation

Fi,u = v · fi,u + v,ufi − v,uFTi,v = v · fi,u

and the fundamental relationship for classical solutions

v · (u,t + fi,xi) = U,t + Fi,xi = 0 .

Discrete versions of this relationship are often exploited in the energy analysis
of numerical methods for scalar and system conservation laws, e.g. Galerkin
least-squares finite element analysis as in Hughes et al. (1986); Hughes and
Mallet (1986); Shakib (1988); Szepessy (1989); Johnson and Szepessy (1990),
finite volume analysis such as given in Osher (1984a); Schonbek (1985); Mer-
riam (1988); Tadmor (1987); Perthame (1990); Sonar (1992); LeFloch et al.
(2002), and discontinuous Galerkin analysis as presented in Jiang and Shu
(1994); Cockburn and Shu (1997); Barth (1998). This latter analysis for the
DG method is discussed in detail for systems of conservation laws in Sect. 3.

2.1 Boltzmann Moment Closure

Consider the particular case of moment systems derived from the kinetic Boltz-
mann equation with Levermore (1996) closure. Boltzmann’s equation is given
by

f(x, v, t),t + v · ∇xf(x, v, t) = C(f)(x, v, t) ,

with f(x, v, t) a nonnegative density function, v ∈ Rd the particle velocity,
and C(f) : R 7→ R the collision operator. Moment systems are obtained by
integrating the Boltzmann equation in velocity space over a vector m(v) of
linearly independant polynomials in velocity,

〈〈m f〉〉,t + 〈〈vim f〉〉,xi = 〈〈mC(f)〉〉 (8)

where 〈〈ψ〉〉 denotes the integral of a measurable function ψ over velocity space.
Without further assumption, the fluxes 〈〈vim f〉〉 cannot be expressed as func-
tions of u = 〈〈m f〉〉. The closure of the system is performed by assuming that
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the distribution function f has a prescribed form, f = fB(u), given by the
minimum entropy principle

H[fB] = min{H[g] | 〈〈gm〉〉 = u} (9)

where H[g] = 〈〈g ln g〉〉 is Boltzmann’s celebrated H-function. Since H is a
convex function, the minimization problem (9) is formally equivalent to

fB = exp(v ·m)

where v = v(u) serves as the Lagrange multiplier associated with the con-
straint 〈〈gm〉〉 = u or equivalently under the closure assumption

u = 〈〈m exp(v ·m)〉〉 .

The moment system (8) can then be rewritten as

u,t + fi,xi = r(u) (10)

with

fi = 〈〈vim exp(v ·m)〉〉 . (11)

Observe that using the kinetic Boltzmann structure, we have that

U(v) = 〈〈fB〉〉 = 〈〈 exp(v ·m)〉〉 (12)

is a suitable conjugate entropy function and that

U(u) = 〈〈(v(u) ·m− 1) exp(v(u) ·m)〉〉 (13)

is the corresponding entropy function so that the duality relationship (2) holds.

A well-known moment system is obtained by selecting m(v) = (1, v, |v|2/2)T

corresponding to mass, momentum, and kinetic energy. In this instance, the
collision integral vanishes identically (r(u) = 0) and (10) reduces to the system
of Euler equations (5 moments) for a monotonic gas. More complex systems
with 10, 14 or 35 moments have been considered in the literature, c.f. Groth
et al. (1995); Levermore (1996); LeTallec and Perlat (1997). In Appendix
A, the compressible Euler equations for a γ-law (polytropic) gas are readily
obtained by increasing the dimension of the particle velocity integration space
to include internal energy I and utilizing the moments m(v, I) = (1, v, |v|2/2+
Iδ)T for δ = (1/(γ − 1)− d/2)−1.
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3 The DG Finite Element Method

Let Ω denote a spatial domain composed of stationary nonoverlapping ele-
ments Ki, Ω = ∪Ki, Ki ∩ Kj = ∅, i 6= j and time slab intervals In ≡
[tn+, t

n+1
− ], n = 0, . . . , N − 1. Both continuous in time approximation and full

space-time approximation on tensor space-time elementsKi×In will be consid-
ered in the analysis. It is useful to also define the element set T = {K1, K2, . . .}
and the interface set E = {e1, e2, . . .} with interface members Ki ∩Kj, i 6= j
of measure d− 1 corresponding to edges in 2-D and faces in 3-D. For brevity,
we avoid the introduction of trace operators and instead use a shorthand no-
tation for trace quantities associated with an interface with normal n, i.e.
f± ≡ limε→0 f(v(x± εn)), 〈f〉+− ≡ (f−+ f+)/2 and [f ]+− = f+− f−. Let Pk(Q)
denote the set of polynomials of degree at most k in a domain Q ⊂ Rd. In the
discontinuous Galerkin method, the approximating functions are discontinu-
ous polynomials in both space and time

Vh =
{

w |w|K×In ∈
(

Pk(K × In)
)m

,∀K ∈ T , n = 0, . . . , N − 1
}

.

Alternatively, Cockburn et al. (1989, 1990); Shu (1999) utilize a semi-discrete
formulation of the DG method together with Runge-Kutta time integration.
In this case, the set of approximating functions are discontinuous polynomials
in space and continuous functions in time denoted by Vhc .

For ease of exposition, the spatial domain Ω is assumed either periodic in all
space dimensions or nonperiodic with compactly supported initial data. This
purposely avoids analysis of boundary conditions for Boltzmann moment sys-
tems which is somewhat delicate and beyond the scope of this paper. Further-
more, the inclusion of boundary conditions into the analysis is not anticipated
to effect the design of interior numerical fluxes. Next, consider the first-order
Cauchy initial value problem











u,t + fi,xi = 0

u(x, t0−) = u0(x)
(14)

with convex entropy extension

U,t + Fi,xi ≤ 0 . (15)

The DG method for the time interval [t0+, t
N
− ] with weakly imposed initial

data vh(x, t
0
−) obtained from a suitable projection of the initial data v(u0(x))

is given by the following statement:
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DG FEM: Find vh ∈ Vh such that

BDG(vh,w) = 0 , ∀w ∈ Vh (16)

with

BDG(v,w) =
N−1
∑

n=0





∑

K∈T

∫

In

∫

K

−(u(v) ·w,t + fi(v) ·w,xi) dx dt

+
∑

K∈T

∫

In

∫

∂K

w(x−) · h(v(x−),v(x+); n) ds dt

+
∑

K∈T

∫

K

(

w(tn+1
− ) · u(v(tn+1

− ))−w(tn+) · u(v(tn−))
)

dx



 (17)

with suitable modifications (not shown here) when source terms are present.
In this statement h(v−,v+; n) : Rm×Rm×Rd 7→ Rm denotes a numerical flux
function, a vector-valued function of two interface states v± and an oriented
interface normal n with the following consistency and conservation properties:

• Consistency with the true flux, h(v,v; n) = f(v) · n
• Discrete cell conservation, h(v−,v+; n) = −h(v+,v−;−n) .

For a given symmetrizable system with entropy function U(u), the DG method
is uniquely specified once Vh, the entropy function U(u), and the numer-
ical flux function h(v−,v+; n) are chosen. In this formulation, the finite-
dimensional space of symmetrization variables vh are the basic unknowns in
the trial space Vh and the dependent variables are then derived via u(vh).
When not needed for clarity, this mapping is sometimes explicitly omitted,
e.g. U(vh) is written rather than U(u(vh)). An important product of the DG
energy analysis given below are sufficient conditions to be imposed on the
numerical flux so that discrete entropy inequalities and total entropy bounds
of the following form are obtained for the discretization of the Cauchy initial
value problem:

• A local cell entropy inequality assuming continuous in time approximation,
vh ∈ Vhc

d

dt

∫

K

U(vh) dx+
∫

∂K

F (v−,h,v+,h; n) ds ≤ 0 , for each K ∈ T (18)

where F (v−,h,v+,h; n) denotes a conservative numerical entropy flux. Sum-
ming over all elements then yields the global inequality

d

dt

∫

Ω

U(vh) dx ≤ 0 . (19)
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• A total entropy bound assuming full space-time approximation, vh ∈ Vh
∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, t
N
− ))) dx ≤

∫

Ω

U(u(vh(x, t
0
−)) dx (20)

where u∗(t0−) denotes the minimum total entropy state of the projected
initial data

u∗(t0−) ≡ 1

meas(Ω)

∫

Ω

u(vh(x, t
0
−)) dx .

Under the assumption that the symmetrizer u,v remains positive definite
and spectrally bounded in space-time, i.e. there exist positive constants c0

and C0 independent of vh such that

0 < c0 ‖z‖2 ≤ z · u,v(vh(x, t)) z ≤ C0 ‖z‖2

for all z 6= 0, the following L2 stability result is then readily obtained for
the Cauchy problem

‖u(vh(·, tN− ))− u∗(t0−)‖L2(Ω) ≤ (c−1
0 C0)1/2 ‖u(vh(·, t0−))− u∗(t0−)‖L2(Ω) .

3.1 DG Energy Analysis for Conservation Law Systems

Consider the DG method applied to the nonlinear system (14). An energy anal-
ysis assuming continuous in time functions, vh ∈ Vhc , yields the semi-discrete
cell-wise entropy inequality (18) whenever the numerical flux satisfies certain
properties dictated by the energy analysis. Specifically, the following semi-
discrete cell entropy theorem extends the previous DG scalar conservation law
energy analysis in Jiang and Shu (1994); Jaffre et al. (1995) to symmetrizable
systems using the symmetrization theory given in Sect. 2. This result is also
given in Cockburn and Shu (1997) using a different proof technique. The semi-
discrete results are then generalized to full space-time in Theorem 2 using the
concept of a minimum entropy state.

Theorem 1 (DG Semi-Discrete Cell Entropy Inequality) Let vh ∈ Vhc
denote a numerical solution obtained using the discontinuous Galerkin method
(17) assuming a continuous in time approximation for the Cauchy initial value
problem (14) with convex entropy extension (15). Assume the numerical flux
h(v−,v+; n) satisfies the system E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1] (21)

where v(θ) = v− + θ [v]+−. The numerical solution vh then satisfies the local
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semi-discrete cell entropy inequality

d

dt

∫

K

U(vh) dx+
∫

∂K

F (v−,h,v+,h; n) ds ≤ 0 , for each K ∈ T (22)

with

F (v−,v+; n) ≡ 〈v〉+− · h(v−,v+; n)− 〈F · n〉+− (23)

as well as the global semi-discrete entropy inequality

d

dt

∫

Ω

U(vh) dx ≤ 0 . (24)

Proof: Evaluate the energy, BDG(vh,vh), for a single stationary element K
assuming continuous in time functions

∫

K

v · u,t dx=
d

dt

∫

K

U dx

=−





∫

K

−v,xi · fi dx+
∫

∂K

v− · h ds





=−





∫

K

−Fi,xi dx+
∫

∂K

v− · h ds





=−
∫

∂K

(−F− · n + v− · h) ds

=−
∫

∂K

( F (v−,v+; n)
︸ ︷︷ ︸

Conservative Flux

+ D(v−,v+; n)
︸ ︷︷ ︸

Entropy Dissipation

) ds

for carefully chosen conservative entropy flux and entropy dissipation functions

F (v−,v+; n)≡〈v〉+− · h(v−,v+; n)− 〈F · n〉+−
D(v−,v+; n)≡−1

2
([v]+− · h(v−,v+; n)− [F · n]+−) .

Observe that the chosen form of F (v−,v+; n) is a consistent and conservative
approximation to the true entropy flux F (v)

• F (v,v; n) = (v · f −F) · n = F · n (consistency)
• F (v−,v+; n) = −F (v+,v−;−n) (conservation) .
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The only remaining task is to determine sufficient conditions in the design of
the numerical flux h(v−,v+; n) so that D(v−,v+; n) ≥ 0. Rewriting the jump
term appearing in the entropy dissipation term as a path integration in state
space

D(v−,v+; n) =−1

2
([v]+− · h(v−,v+; n)− [F · n]+−)

=−1

2
[v]+− ·



h(v−,v+; n)−
1
∫

0

FT,v(v(θ)) · n dθ





=−1

2
[v]+− ·



h(v−,v+; n)−
1
∫

0

f(v(θ)) · n dθ





=−1

2

1
∫

0

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) dθ .

A sufficient condition for nonnegativity of D(v−,v+; n) and the local cell
entropy inequality (22) when finite-dimensional subspaces are employed is that
the integrand be nonpositive. This yields a system generalization of Osher’s
famous E-flux condition for scalar conservation laws given in Osher (1984b)

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1] . (25)

Summation of (22) over all elements in the mesh together with the conservative
telescoping property of F (v−,v+; n) yields the global entropy inequality (24).

In Sects. 3.2 and 3.3, specific examples of kinetic Boltzmann moment system
E-fluxes are given. Use of the system E-flux condition in the fully-discrete
space-time DG discretization is also sufficient to construct the following two-
sided bound on the total entropy not previously elucidated for the DG method.

Theorem 2 (DG Fully-discrete Total Entropy Bounds) Let vh ∈ Vh
denote the space-time numerical solution obtained using the discontinuous
Galerkin method (17) for the Cauchy initial value problem (14) with convex
entropy extension (15). Assume the numerical flux h(v−,v+; n) satisfies the
system E-flux condition

[v]+− · (h(v−,v+; n)− f(v(θ)) · n) ≤ 0 , ∀θ ∈ [0, 1]

where v(θ) = v− + θ [v]+−. The numerical solution vh then satisfies the total
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entropy bound

∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, t
N
− ))) dx ≤

∫

Ω

U(u(vh(x, t
0
−)) dx (26)

where u∗(t0−) denotes the minimum total entropy state of the initial projected
data

u∗(t0−) ≡ 1

meas(Ω)

∫

Ω

u(vh(x, t
0
−)) dx .

Proof: Analysis of the spatial terms follows the same path taken in Theorem
1 (omitted here) with an additional integration performed in the time coordi-
nate. Consider the energy of the remaining time evolution terms in (17) after
integration-by-parts for a single time slab interval In

∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx=

∫

Ω

∫

In

U,t dt dx+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx

=
∫

Ω

(

[U ]
tn+1
−
tn−
− [U ]

tn+
tn−

+ v(tn+) · [u]
tn+
tn−

)

dx .

Taylor series with integral remainder together with the duality relationship
(2) yields

[U ]
tn+
tn−
− v(tn−) · [u]

tn+
tn−

+Rn = 0 , Rn ≡
1
∫

0

(1− θ) [v]
tn+
tn−
· u,v(v(θ)) [v]

tn+
tn−
dθ ≥ 0

where v(θ) = v(tn−) + θ [v]
tn+
tn−

. Inserting into the time evolution terms

∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx =

∫

Ω

(

[U ]
tn+1
−
tn−

+Rn
)

dx .

Summing over all time slabs, the first term on the right-hand side of this
equation vanishes except for initial and final time slab contributions. Utilizing
nonnegativity of the remainder terms Rn then yields the following inequality
for the time evolution terms

N−1
∑

n=0





∫

In

∫

Ω

v · u,t dx dt+
∫

Ω

v(tn+) · [u]
tn+
tn−
dx



 ≥
∫

Ω

(

U(tN− )− U(t0−)
)

dx .
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Assume satisfaction of the system E-flux condition, the spatial term analysis
used in the proof of Theorem 1 reduces to the inequality

N−1
∑

n=0

∑

K∈T

∑

K

∫

In





∫

K

−v,xi · fi dx+
∫

∂K

v− · h ds



 dt ≥ 0 .

Combining temporal and spatial results yields

0 = BDG(v,v) ≥
∫

Ω

(

U(tN− )− U(t0−)
)

dx .

Hence, the desired upper bound in (26) is established when finite-dimensional
subspaces are employed

∫

Ω

U(u(vh(x, t
N
− ))) dx ≤

∫

Ω

U(u(vh(x, t
0
−)) dx . (27)

To obtain the lower bound in (26), we exploit the well-known thermodynamic
concept of a minimum total entropy state (see for example Merriam (1988)).
Define the integral average state u∗ at time slab boundaries

u∗(tn−) ≡ 1

meas(Ω)

∫

Ω

u(vh(x, t
n
−)) dx , n = 0, . . . , N .

For the DG space-time discretization of the Cauchy initial value problem, u∗

is invariant when evaluated at time slab boundaries, i.e.

u∗(tn−) = u∗(tn−1
− ) = . . . = u∗(t0−) (28)

owing to discrete conservation in both space and time. A Taylor series with
integral remainder expansion of the entropy function given two states u∗(tn−)
and u(vh(x, t

n
−)) for a fixed n yields

U(u) = U(u∗) + v(u∗) · (u− u∗) +

1
∫

0

(1− θ))(u− u∗) · U,uu(θ)(u− u∗) dθ .

When integrated over Ω, the second right-hand side term vanishes identically
by the definition of u∗

∫

Ω

U(u) dx =
∫

Ω

U(u∗) dx+
∫

Ω

1
∫

0

(1− θ))(u− u∗) · U,uu(θ)(u− u∗) dθ dx .

13

NAS Technical Report
NAS-06-006

July 2006



From strict convexity of the entropy function, it follows that u∗ is a minimum
total entropy state since

∫

Ω U dx is minimized when u = u∗. Finally, since
u∗(tn−) is constant for n = 0, . . . , N , then

∫

Ω

U(u∗(t0−)) dx =
∫

Ω

U(u∗(tN− )) dx ≤
∫

Ω

U(u(vh(x, t
N
− ))) dx .

This establishes the lower bound in (26).

3.2 Kinetic Boltzmann Moment System E-Fluxes

Both Theorems 1 and 2 assume satisfaction of the system E-flux condition.
A new class of system E-fluxes for the discontinuous Galerkin method is sug-
gested by the kinetic Boltzmann moment closure flux formula (11). Following
a strategy similar to that taken by Deshpande (1986b) in the different con-
text of flux vector splitting, a kinetic mean-value (KMV) numerical flux was
proposed in Barth and Charrier (2001). The following lemma shows that this
flux is a valid system E-flux.

Lemma 3 (Kinetic Boltzmann Moment System E-Flux) The kinetic mean-
value (KMV) numerical flux

hKMV(v−,v+; n) = 〈f · n〉+− −
1

2

1
∫

0

〈〈|v · n|m⊗m exp(v(θ) ·m)〉〉 [v]x+

x−
dθ

(29)

with v(θ) = v− + θ [v]+− satisfies the system E-flux condition

[v]+− · (hKMV(v−,v+; n)− f(v(ξ)) · n) ≤ 0 , ∀ ξ ∈ [0, 1] .

Proof: Consider the following identities ∀ ξ ∈ [0, 1]

1

2
(f+ − f(v(ξ))) · n =

1

2

1
∫

ξ

〈〈(v · n) m exp(v(θ)·m)〉〉 · [v]+ξ dθ

=
1

2

1
∫

ξ

〈〈(1− ξ) (v · n) m exp(v(θ)·m)〉〉 · [v]+− dθ

1

2
(f− − f(v(ξ))) · n =−1

2

ξ
∫

0

〈〈(v · n) m exp(v(θ)·m)〉〉 · [v]ξ− dθ
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=−1

2

ξ
∫

0

〈〈ξ (v · n) m exp(v(θ)·m)〉〉 · [v]+− dθ .

The stated lemma follows immediately from

[v]+−· (hKMV−f(v(ξ)) · n) =
1

2

1
∫

ξ

〈〈((1− ξ)(v · n)−|v · n|)(m· [v]+−)2 exp(v(θ)·m)〉〉 dθ

− 1

2

ξ
∫

0

〈〈ξ (v · n) + |v · n|)(m· [v]+−)2 exp(v(θ)·m)〉〉 dθ

≤ 1

2

1
∫

ξ

(1− ξ) 〈〈(v · n)−(m· [v]+−)2 exp(v(θ)·m)〉〉 dθ

− 1

2

1
∫

ξ

ξ 〈〈(v · n)+(m· [v]+−)2 exp(v(θ)·m)〉〉 dθ

≤ 0 .

3.3 Simplified Kinetic Boltzmann Moment System E-Fluxes

The kinetic Boltzmann moment system E-flux (29) of Sect. 3.2 requires the
evaluation of the state space path integration connecting v± as well as the par-
ticle integrations appearing in 〈〈·〉〉. Except for the simplest systems, these inte-
grations cannot be carried out in closed form. Fortunately, the results of The-
orems 1 and 2 are retained using other simpler numerical fluxes h(v−,v+; n)
for which the following comparison principle is satisfied, see also Barth (1998,
1999)

[v]+− · h(v−,v+; n) ≤ [v]+− · hKMV(v−,v+; n) ≤ [v]+− · hEFlux(v−,v+; n) .

The following lemma presents a discrete kinetic Boltzmann moment E-flux
which replaces exact path integration in state space with q-point Gauss-
Lobatto quadrature.

Lemma 4 (Discrete Kinetic Boltzmann Moment E-Flux) Let ωi,q ∈ R+

and ξi,q ∈ [0, 1] denote q-point Gauss-Lobatto quadrature weights and locations.
The discrete kinetic Boltzmann moment numerical flux

hDKMV(q)(v−,v+; n) = 〈f · n〉+− −
1

2
hdDKMV(q)(v−,v+; n) (30)

15



with

hdDKMV(q)(v−,v+; n) =
q
∑

i=1

ωi,q〈〈|v · n|m⊗m exp(v(ξi,q) ·m(v))〉〉 [v]+−

and v(ξi,q) = v− + ξi,q [v]+− satisfies the system E-flux comparison principle

[v]+− · hDKMV(q)(v−,v+; n) ≤ [v]+− · hKMV(v−,v+; n)

for q ≥ 2.

Proof: Begin with the definition of hdKMV appearing in the KMV flux (29)

[v]+− · hdKMV = [v]+− ·
1
∫

0

〈〈|v · n|m(v)⊗m(v) exp (v(θ) ·m(v))〉〉 [v]+− dθ

= [v]+− · 〈〈|v · n|m(v)⊗m(v)

1
∫

0

exp (v(θ) ·m(v)) dθ〉〉 [v]+−

= 〈〈|v · n| ([v]+− ·m(v))2

1
∫

0

exp (v(θ) ·m(v)) dθ〉〉 .

Consider the following scalar function representing the integrand of the path
integration

g(θ) = exp (v(θ) ·m)

followed by 2k-times differentiation

g(2k)(θ) = ([v]+− ·m)2k exp (v(θ) ·m) ≥ 0 .

Appealing to the well known theory of q-point Gauss-Lobatto numerical quadra-
ture with weights ωi,q ∈ R+ and locations ξi,q ∈ [0, 1] for g(θ) ∈ C2q−2[0, 1]
(see for example Abramowitz and Stegun (1970))

q
∑

i=1

ωi,q g(ξi,q)−
1
∫

0

g(θ) dθ =
q(q − 1)3((q − 2)!)4

(2q − 1)((2q − 2)!)3 g
(2q−2)(η) ≥ 0 (31)

for some η ∈ [0, 1]. Consequently, using Gauss-Lobatto quadrature with q ≥ 2

16



[v]x+

x−
· hdKMV(v−,v+; n) = [v]x+

x−
·

1
∫

0

〈〈|v · n|m⊗m exp(v(θ) ·m(v))〉〉 [v]+−dθ

≤ [v]x+

x−
·

q
∑

i=1

ωi,q〈〈|v · n|m⊗m exp(v(ξi,q) ·m(v))〉〉 [v]+−

= [v]x+

x−
· hdDKMV(q) .

Using this result, the stated lemma is readily obtained.

4 Numerical Results

In this section, moment approximations are considered for a monatomic gas
with density ρ, velocity u ∈ R3, and temperature θ. Two specific moment
approximations considered below are

• 5 moments, m(v) = (1, v, |v|2)T with Maxwellian f

f = exp(v ·m(v)) =
ρ

(2πθ)3/2
exp

(

− 1

2θ
|v − u|2

)

. (32)

The corresponding symmetrization variables are given by

v =

(

log

(

ρ

(2πθ)3/2

)

− 1

2θ
|u|2, u

θ
,− 1

2θ

)T

. (33)

Upon performing moment integrations, all collision terms vanish yielding
the Euler equations for a monatomic gas

∂

∂t







ρ
ρu

ρ|u|2 + 3ρθ





+∇ ·







ρu
ρu⊗ u+ ρθ
ρu(|u|2 + 5θ)





 = 0 . (34)

• 10 moments, m = [1, v, v ⊗ v] with Gaussian f

f = exp(v ·m(v)) =
ρ

((2π)3det(Θ))1/2
exp

(

−1

2
(v − u)TΘ−1(v − u)

)

(35)

where Θ ∈ R3×3 is a symmetric positive definite generalized temperature
matrix and θ ≡ 1

3
trace(Θ). In this case, the symmetrization variables are

given by

v =

(

log

(

ρ

((2π)3det(Θ))1/2

)

− 1

2
uTΘ−1u,Θ−1u,−1

2
Θ−1

)T

. (36)
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The moment equations are given by

∂

∂t







ρ
ρu

ρu⊗ u+ ρΘ





+∇ ·







ρu
ρu⊗ u+ ρΘ

ρu⊗ u⊗ u+ ρΘ⊗ u





 =







0
0

Q(ρ,Θ)





 (37)

where the right-hand side collision term has been modeled assuming Maxwell
molecules as suggested in Levermore and Morokoff (1998)

Q(ρ,Θ) =
ρθ

µ(θ)
(θ I−Θ)

with the viscosity law for Argonne gas used in calculations

µ

µref

=

(

θ

θref

).72

.

Further details concerning these two systems can be found in Levermore and
Morokoff (1998).

4.1 Velocity Space Integration

For most moment closure models involving moment polynomials of degree
greater than four, it is impossible to evaluate the needed integrals 〈〈 · 〉〉 in
closed form. At first glance, the prospect of approximating the velocity space
integration using numerical quadrature appears computationally inefficient.
Fortunately, extremely efficient quadrature formulas for the 5 and 10 moment
approximations exist. For higher order moment approximations that are per-
turbations of these models, the numerical quadratures developed for the 5
and 10 moment models may still be very accurate approximations near equi-
librium. In LeTallec and Perlat (1997), they construct optimal quadrature
points and weights for polynomial moments of the Maxwellian distribution
written in spherical coordinates. A different but related strategy is given here
optimized for polynomial moments of the Gaussian distribution. Consider for
illustrative purposes the state calculation

〈〈m(v) exp(m(v)·v)〉〉 =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

m(v)
ρ

((2π)3det(Θ))1/2
e−1/2(v−u)TΘ−1(v−u)dv

Next, construct a factorization matrix C ∈ R3×3 of the SPD Θ matrix

CTC = 2Θ

18



for use in the linear transformation

v = u+ CTw

so that the Gaussian distribution is canonically transformed

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

m(v) e−1/2(v−u)TΘ−1(v−u)dv = det(CT )

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

m(v(w)) e−w·wdw

where m(v(w)) remain polynomials moments if m(v) are polynomial moments.
Optimal n-point quadrature locations and weights are obtained from roots of
Hermite polynomials H(n,w) and H(n− 1, w) with an error term depending
on 2n derivatives of the transformed moments, see Abramowitz and Stegun
(1970). For terms such as 〈〈|v · n|m(v) exp(v ·m(v))〉〉, a final normal aligned
rotation transformation is utilized, z = R(n)w. Because R(n) is a rotation,
w · w = z · z and

v · n = u · n+ nTCTw = u · n+ nTCTRT (n)z = u · n+ ‖C n‖z1

if the chosen rotation satisfies

R(n)C n = ‖C n‖(1, 0, 0)T .

This isolates all the nondifferentiability associated with |v · n| with the trans-
formed z1 coordinate associated with the normal direction.

4.2 Jacobian Linearization

For implicit methods such as Newton’s method, one is also often interested
in derivatives of this numerical flux. Recall the discrete kinetic Boltzmann
moment numerical flux proposed for the discontinuous Galerkin method after
rewriting the first term

hDKMV(q)(v−,v+; n) = 〈〈(v · n)m(v)(exp(v− ·m) + exp(v+ ·m))/2〉〉

− 1

2

q
∑

i=1

ωi,q〈〈|v · n|m⊗m exp(v(ξi,q) ·m(v))〉〉 [v]+−

and v(ξi,q) = v− + ξi,q [v]+−. This form makes the computation of derivatives
straightforward. For example, derivatives with respect to v− are given by

∂hDKMV(q)(v−,v+; n)

∂v−
= 〈〈(v · n)m⊗m exp(v− ·m)/2〉〉
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g(v.n)

v.n

Fig. 1. Smooth upper approximation g(v · n) to the function |v · n|.

+
1

2

q
∑

i=1

ωi,q〈〈|v · n|m⊗m exp(v(ξi,q) ·m)〉〉

− 1

2

q
∑

i=1

ωi,q(1− ξi,q)〈〈|v · n|m⊗m⊗m exp(v(ξi,q) ·m)〉〉 [v]+−

The second term containing |v · n| should be rotated to a normal aligned
coordinate. In addition, it should be mentioned that |v·n| can be approximated
by a smooth upper approximation without compromising the cell entropy
inequality, i.e. let g(v · n) be a piecewise smooth function such that |v · n| ≤
g(v·n), see Fig. 1. It is then straightforward to prove that the modified discrete
Boltzmann moment numerical flux

hDKMV(q)(v−,v+; n) = 〈〈(v · n)m(v)(exp(v− ·m) + exp(v+ ·m))/2〉〉

− 1

2

q
∑

i=1

ωi,q〈〈g(v · n) m⊗m exp(v(ξi,q) ·m(v))〉〉 [v]+−

is also a system E-flux as described earlier.

4.3 Discontinuous Galerkin Stabilization

All the flow fields computed below contain strong discontinuities. Except when
piecewise constant polynomials are employed, numerical solutions computed
with the discontinuous Galerkin method do not possess a discrete maximum
(minimum) principle. Consequently, additional nonlinear stabilization is added
to the baseline DG method (17) near discontinuities, see also Jaffre et al.
(1995); Barth (1998). In the present calculations, the following stabilization
term has been added to the method (suitably modified when source terms are
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present)

BStab(vh,wh) =
N−1
∑

n=0

∫

In

∑

K∈T n

∫

K

εK ∇vh · u,v∇wh dx dt (38)

εK ≡
h

‖∇vh‖u,v,T

(

CK RT + h−1/2C∂K R∂T

)

utilizing the element interior and trace space-time residuals

RK ≡ ‖div(f(vh))‖u−1
,v ,K , R∂K ≡ ‖h(v−,h,v+,h; n)− f(v−,h) · n‖u−1

,v ,∂K

for chosen constants CK and C∂K .

4.4 5 Moment Results

The first test problem consists of Mach=5 supersonic 2D flow over a cylin-
der geometry. Calculations using linear elements have been performed on an
adapted simplicial mesh containing 25K 2D elements using the full 5 moment
(3D) numerical flux. A 4x4x4 velocity quadrature space has been used for all
particle velocity integrations except those integrations involving |v ·n| in which
case 12 quadrature points have been used in the normal direction. Compar-
ison calculations have been performed using the a Lax-Friedrichs numerical
flux function (see Cockburn et al. (1990)) for a monatomic (γ = 5/3) gas.
Figure 2 shows solution iso-density and Mach number contours comparing the

(a) (b) (c) (d)

Fig. 2. Supersonic flow (Mach=5) over a cylinder geometry computed using the
discontinuous Galerkin method. Solution iso-density contours using the 5 moment
numerical flux are shown in (a) and Lax-Friedrichs flux in (b). Solution Mach num-
ber contours for the 5 moment numerical flux are shown in (c) and Lax-Friedrichs
flux in (d).
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5 moment numerical flux and the standard Lax-Friedrichs flux. Very little dif-
ferences are observed between the solutions obtained using the 5 moment and
Lax-Friedrichs numerical fluxes. A small solution defect is seen in the Mach
number contours along the top-bottom symmetry line using both fluxes. This
is frequently observed in high Mach number bow shock computations. Figure

−1.4 −1.2 −1 −0.8 −0.6 −0.4
x / diameter

−3

−1

1

3

5

7

Density (5 moments)
Velocity (5 moments)
Density (Lax−Friedrichs)
Velocity (Lax−Friedrichs)

Fig. 3. Supersonic flow (Mach=5) over cylinder geometry computed using the dis-
continuous Galerkin method. Density and velocity sampled along the top-bottom
symmetry line for solutions obtained using the 5 moment and Lax-Friedrichs fluxes.

3 graphs density and velocity profiles along the symmetry line for the solutions
obtained with the 5 moment and Lax-Friedrichs numerical fluxes. Once again
very little differences are observed between solutions obtained using the two
numerical fluxes.

The total computing time for the 5 moment numerical flux is easily one order
of magnitude larger than the compute time for the Lax-Friedrichs flux. For
this particular problem, the Lax-Friedrichs flux seems the most appropriate
choice. As mentioned earlier, a motivation for developing the kinetic numer-
ical flux discussed in this paper is the ability to discretize moment approx-
imations (usually employing moments of large polynomial degree) for which
closed formed expressions of the flux function may not be possible. In these
cases, the Lax-Friedrichs flux is problematic to implement.

4.5 10 Moment Results for Rarefied Gases

To validate the implementation of the 10 moment model, the 10 moment
(3D) numerical flux has been used in the discontinuous Galerkin method with
linear elements to compute the 1D stationary shockwave problem posed in
Levermore and Morokoff (1998). Figure 4 graphs discontinuous Galerkin so-
lution density profiles obtained for preshock Mach numbers of 1.2, 1.34, 3.0,
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and 5.0. Normalized density profiles are graphed in nondimensional mean free
path units x/λ. The theory predicts that smooth solutions cease to exist at
a critical Mach number of 1.34 or greater. The numerical computations also
predict this critical Mach number. At higher preshock Mach numbers, a small
shockwave forms followed by a smooth viscous profile. Figure 4 also compares
computed M = 5 shockwave profiles with the reduced 10 moment equations
given in Levermore and Morokoff (1998) as well as DSMC calculations (see
Bird (1994)) and a Navier-Stokes solution assuming no heat transfer present
as discussed in the Levermore paper. The agreement between the 10 moment
solution results and the reduced equation solution is excellent.
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Fig. 4. Normalized density profiles for 1D shockwaves computed using the 10 mo-
ment approximation. The left figure graphs profiles obtained for various preshock
Mach numbers. The right figure compares the 10 moment solution at M=5 to
Navier-Stokes and DSMC calculations as well as the reduced equations given in
Levermore and Morokoff (1998).

In the last numerical example, supersonic 2D flow (M=5) is computed over
the sample cylinder geometry assuming 273◦K Argon gas at a transistional
Kudsen number of 1/10. The final adapted 2D mesh contains approximately
20K simplices. As expected at this transistional Knudsen number, the resulting

(a) (b) (c)

Fig. 5. Supersonic flow (Mach=5) over cylinder geometry computed using the dis-
continuous Galerkin method with the 10 moment model. Shown are (a) iso-density
contours , (b) Θ11 contours, and (c) Θ12 contours.
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contour plots show a significant thickening of the shockwave profile due to the
collision model in the the 10 moment system. This effect ultimately changes the
bow shock location and shape. In these calculations, we have used a slip wall
boundary condition although the 10 moment equations would permit a noslip
boundary condition to be imposed as well. The 10 moment numerical flux
was also used for farfield imposition of data. The smooth boundary contours
suggest the favorable characteristic imposition of data owing to the upwind
properties of the 10 moment numerical flux.

5 Conclusions

This paper establishes sufficient conditions to be imposed on the numerical
flux function so that energy stability of the discontinuous Galerkin method is
obtained for the class of first-order systems obtained as moments of a Boltz-
mann equation with Levermore closure. The kinetic mean-value numerical flux
hKMV(v−,v+; n) is then proposed and shown to satisfy the sufficient condi-
tions for energy stability. The structure of Levermore closure is then further
exploited so that path integration appearing in this flux can be replaced by
Gauss-Lobatto quadrature without compromising energy stability of the DG
method.

In ongoing work, these results are further generalized to include perturbed
Levermore closures for 35 moment systems and other kinetic systems such as
those occuring in radiative transfer and semi-conductor device simulation.

A The Boltzmann Moment Structure for a Polytropic Gas

For a γ-law (polytropic) gas, one has with suitable nondimensionalization

p = (γ − 1)ρε, T = (γ − 1)ε

where ρ denotes fluid density, p pressure, T temperature, and ε the internal
energy. Following Perthame (1990), we consider the following Maxwellian in
Rd for a γ-law gas:

f(ρ, u, T ; v, I) =
ρ

α(γ, d)T d/2+1/δ
e−(|u−v|2/2+Iδ)/T (A.1)

with

δ =
1

1
γ−1
− d

2
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and

α(γ, d) =
∫

Rd

e−|v|
2/2dv ·

∫

R+

e−I
δ

dI .

Using this particular form, Perthame shows that the Euler equations for a
γ-law gas are obtained as the following moments

m(v, I) =







1
v

|v|2/2 + Iδ





 (A.2)

so that

u = 〈〈m f〉〉, fi = 〈〈vim f〉〉, 〈〈 · 〉〉 ≡
∫

Rd

∫

R+

(·) dI dv .

The nonobvious energy moment |v|2/2 + Iδ was devised by Perthame rather
than the more standard moment |v|2/2+I (see for example Deshpande (1986a,b))
in order that a classical Boltzmann entropy H(f) = f ln f be obtained.

It is straightforward to verify that this choice of moments yields an exponential
form for the conjugate entropy function

U(v) = 〈〈f〉〉 = 〈〈 exp(v ·m(v, I))〉〉 .

Inserting the expression for δ into the temperature term appearing in the
Maxwellian yields

f(ρ, u, T ; v, I) =
1

α(γ, d)

ρ

T 1/(γ−1)
e−(|u−v|2/2+Iδ)/T . (A.3)

Alternatively, the expression for exp(v·m) obtained using the entropy function

U(u) = Constant− ρs

(γ − 1)

with

s = ln
(γ − 1)ε

ργ−1
+ (γ − 1)

(

lnα +
γ

γ − 1

)

yields

v = UT
,u =







− s
γ−1
− |u|

2

2T
u
T

− 1
T





 =







ln
(

ρ
αT 1/(γ−1)

)

− |u|
2

2T
u
T

− 1
T
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and consequently

exp(v ·m(v, I)) =
ρ

αT 1/(γ−1)
e−(|u−v|2/2+Iδ)/T .

Comparing with (A.3), an exponential form for the conjugate entropy function
is verified

U(v) = 〈〈f〉〉 = 〈〈 exp(v ·m(v, I))〉〉 .

Moreover, a straightforward computation shows that

U(u) = 〈〈(v ·m− 1) exp(v ·m)〉〉

so that the desired duality relationship

U(u) + U(v(u)) = v(u) · u

is obtained.
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